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Remove humans from the loop

Human feedback has been essential in

• Generating data used to train models (annotations)

• Aligning LLMs or other foundation models through RLHF

• Transferring expert knowledge to models

• ...

Human feedback is expensive!

Can we remove humans or at least minimize their intervention?
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Fine-tuning LLMs/RAGs to expert Q&A tasks

New expert knowledge, how to ”pass” this knowledge to an LLM?

Initially, the system cannot answer any question ... How much human intervention is needed?
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Online classification problem

In each round t ≥ 1:

a. Query characterized by its embedding or representation qt ∈ E ⊂ Rd in an i.i.d. manner

according to an unknown distribution µ. N possible labels i ∈ [N].

b. Agent’s Guess with or without Expert Guidance

• dataset Dt : query-label pairs that the expert labeled up to round t

• decision 1 (ask the expert): correct label ı̂t = it ∈ [N], (qt , it) is appended to Dt

• decision 2 (guess): ı̂t , no feedback

Unobserved rewards: cost of calling the expert α = −1 , wrong answer γ = −10, and correct

answer β = +1.

Reward obtained by algorithm π in round t: rπ(t)
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Voronoi regret

Expected regret vs Oracle with knowledge of the expert labeling policy.

Rπ(T ) = βT −
T∑
t=1

E[rπ(t)]

Expert labeling policy dictated by a partition of convex polytopes C1, . . . , CN of E , unknown

to the agent. Whenever qt ∈ Ci , the expert provides label i .

Example: each label i , seed si ∈ E .

E partitioned as the Voronoi tessellation

generated by s1, . . . , sN .
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Algorithm design: intuition

The expected volumea of a convex hull formed by random points remains negligible until

the number of samples is exponential in d .

aChakraborti, D., Tkocz, T., and Vritsiou, B.-H. (2021). A note on volume thresholds for random

polytopes. Geometriae Dedicata, 213(1):423–431.

Large time-horizon (≥ ed): volumes emerge, and we should learn the geometry of the cells.

The CHC (Conservative Hull-based Classifier) algorithm.

Moderate time-horizon (≤ ed): cells have not emerge yet, approximating them as single

points is sufficient.

The CC (Center-based Classifier) algorithm.

5



Algorithm design: intuition

The expected volumea of a convex hull formed by random points remains negligible until

the number of samples is exponential in d .

aChakraborti, D., Tkocz, T., and Vritsiou, B.-H. (2021). A note on volume thresholds for random

polytopes. Geometriae Dedicata, 213(1):423–431.

Large time-horizon (≥ ed): volumes emerge, and we should learn the geometry of the cells.

The CHC (Conservative Hull-based Classifier) algorithm.

Moderate time-horizon (≤ ed): cells have not emerge yet, approximating them as single

points is sufficient.

The CC (Center-based Classifier) algorithm.

5



Large horizon: the CHC algorithm

CHC guesses only when it is sure!

Algorithm 1 Conservative Hull-based Classifier (CHC)

1: Initialize Qi,1 ← ∅ for i ∈ [N]

2: for t = 1, . . . ,T do

3: if ∃ i ∈ [N] : qt ∈ hullE(Qi,t) then

4: ı̂t ← i

5: else

6: call expert, and set ı̂t ← it
7: Qit ,t+1 ← Qit ,t ∪ {qt}
8: end if

9: end for
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The CHC algorithm

Hulls Ĉi,t of CHC at t = 200. µ is a mixture of truncated Gaussian distributions with equal

weights and covariance matrix 0.01I . Stars are the seeds, circles are the queries that required

an expert call.
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Regret analysis of CHC

Flags of polytope. A flag of P is a sequence (Fj)
d−1
j=0 of faces1 of P such that dim(Fj) = j

and F0 ⊂ · · · ⊂ Fd−1.

Number of flags of P: F (P)

A quadrilateral has F (P) = 8

flags

1Faces of a polytope are specific planar surfaces on its boundary, e.g., for a cube, the 0-dim faces are the

vertices, the 1-dim faces are the 12 edges, and the 2-dim faces are the 6 squares forming the boundary.
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Regret analysis of CHC

Theorem 1 Assume that µ is abs. cont. w.r.t. Lebesgue measure with density in [c ,C ]

(a) If E = [0, 1]d and d ≥ 2, then the regret of CHC satisfies

RCHC(T ) ≤ (β − α)
C

c

∑N
i=1 F (Ci )

(d + 1)d−1d!
logd(T ) +O(logd−1(T ) log log(T )).

(b) if E = Sd−1, d ≥ 3 and each cell Ci is contained in an open halfsphere S+
ei , then the

regret of CHC satisfies

RCHC(T ) ≤ (β − α)
KC

c

∑N
i=1 F (Ci )

dd−2(d − 1)!
logd−1(T ) +O(logd−2(T ) log log(T )),

where K = max
i∈[N]

(
maxy∈Ci y

>ei
miny∈Ci y

>ei

)d

.
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Proof sketch

CHC always gives the right answer: RCHC(T ) = (β − α)
∑T

t=1

∑N
i=1 E[µ(Ci \ Ĉi,t)].

+ Proposition2 Let P a convex polytope in Rd with d ≥ 2 and n ≥ 1 points p1, . . . , pn
sampled independently and uniformly at random in P, with convex hull Pn. Then

E[λ(P \ Pn)] =
λ(P)F (P)

(d + 1)d−1(d − 1)!

logd−1 n

n
+O

(
logd−2(n) log log n

n

)

where F (P) is the number of flags of P, i.e., the number of sequences F0 ⊂ F1 ⊂ · · · ⊂ Fd−1

of i-dimensional faces of P.

+ Rejection sampling, to account for non-uniform distributions.

2Bárány, I. and Buchta, C. (1993). Random polytopes in a convex polytope, independence of shape, and

concentration of vertices. Mathematische Annalen, 297(1):467–497.
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2Bárány, I. and Buchta, C. (1993). Random polytopes in a convex polytope, independence of shape, and

concentration of vertices. Mathematische Annalen, 297(1):467–497.

10



Proof sketch

CHC always gives the right answer: RCHC(T ) = (β − α)
∑T

t=1

∑N
i=1 E[µ(Ci \ Ĉi,t)].
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Voronoi regret of CHC

Corollary (a) if E = [0, 1]d and d ≥ 2, then the regret of CHC satisfies

RCHC(T ) ≤ 8(β − α)CN

3c(d + 1)d−1

(
2e(N + 2d)

d − 1

)d/2

logd(T ) +O(logd−1(T ) log log(T )).

(b) if E = Sd−1, d ≥ 3 and each cell Ci is contained in an open half-sphere S+
ei , then the

regret of CHC satisfies

RCHC(T ) ≤ 4(β − α)KCN

cdd−2

(
2eN

d − 2

)(d−1)/2

logd−1(T ) +O(logd−2(T ) log log(T )).
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Minimax optimality of CHC in dimension 1

Theorem 2 Assume that E = [0, 1] and that µ has no atoms. Then for all T ≥ 1, the

regret of CHC satisfies RCHC(T ) ≤ 2(β − α)N log (T + 1) .

Theorem 3 Assume that E = [0, 1] and that µ is uniform on E . Denote by θ =

(s1, ..., sN) ∈ [0, 1]N a set of N query seeds in [0, 1]. Then for all T ≥ 1, the minimax

regret satisfies

inf
π

max
θ∈[0,1]N

Rπ(T , θ) ≥ (β − α)
N − 1

64
√

2
log

(
T + 1

2

)
= Ω((β − α)(N − 1) logT ).
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Moderate horizon: the CC algorithm

Phase 1 (Explore) Expert called at each round t. ŝi (t) := 1
|Qi,t |

∑
q∈Qi,t

q

Estimated minimum center gap δmin: δ̂min(t) = mini 6=j ‖ŝi (t)− ŝj(t)‖2.

Stopping criterion:

T1 := min{t ≤ T : ∀i ∈ [N] |Qi,t | ≥
108σ2

δ̂2
min(t)

(d + 2 logT )}

Phase 2 (Commit) In the second phase (t ∈ [T1 + 1,T ]), the center estimates are no longer

updated. CC guesses at each round the label of the closest estimated center:

ı̂t = arg mini ‖qt − ŝi (T1)‖2.
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Regret analysis of CC

Assumption (Subgaussian mixture) µ is a mixture of N σ-subgaussian distributions on Rd

with component means si and mixture weights pi .

Let δmin := mini 6=j ‖si − sj‖2.

Theorem 4 Let pmin := mini∈[N] pi . The regret of CC satisfies

RCC(T ) ≤ (β − α)(logN + 1)

pmin

(
1 +

192σ2(d + 2 logT )

δ2
min

)
+(2β−γ−α)N+(β−γ)Te−

c−32
48 d .

If T ≤ ed , and if the mixture centers are sufficiently separated3: δ2
min ≥ 80σ2d then

RCC(T ) ≤ 41

5

(β − α)(logN + 1)

pmin
+ 2(β − γ)(N + 1).

3The expected distance between two random points scales as
√
d .

14



Regret analysis of CC

Assumption (Subgaussian mixture) µ is a mixture of N σ-subgaussian distributions on Rd

with component means si and mixture weights pi .

Let δmin := mini 6=j ‖si − sj‖2.

Theorem 4 Let pmin := mini∈[N] pi . The regret of CC satisfies

RCC(T ) ≤ (β − α)(logN + 1)

pmin

(
1 +

192σ2(d + 2 logT )

δ2
min

)
+(2β−γ−α)N+(β−γ)Te−

c−32
48 d .

If T ≤ ed , and if the mixture centers are sufficiently separated3: δ2
min ≥ 80σ2d then

RCC(T ) ≤ 41

5

(β − α)(logN + 1)

pmin
+ 2(β − γ)(N + 1).

3The expected distance between two random points scales as
√
d .

14



Regret analysis of CC

Assumption (Subgaussian mixture) µ is a mixture of N σ-subgaussian distributions on Rd

with component means si and mixture weights pi .

Let δmin := mini 6=j ‖si − sj‖2.

Theorem 4 Let pmin := mini∈[N] pi . The regret of CC satisfies

RCC(T ) ≤ (β − α)(logN + 1)

pmin

(
1 +

192σ2(d + 2 logT )

δ2
min

)
+(2β−γ−α)N+(β−γ)Te−

c−32
48 d .

If T ≤ ed , and if the mixture centers are sufficiently separated3: δ2
min ≥ 80σ2d then

RCC(T ) ≤ 41

5

(β − α)(logN + 1)

pmin
+ 2(β − γ)(N + 1).

3The expected distance between two random points scales as
√
d .

14



Dealing with high dimension

Algorithm 2 Generalized Hull-based Classifier (GHC(τ))

1: Initialize Qi,1 ← ∅ for i ∈ [N]

2: for t = 1, . . . ,T do

3: while ∃ i ∈ [N] : Qi,t = ∅ do

4: Apply Algorithm CHC

5: end while

6: if ∃i ∈ [N] : d(qt , hullE(Qi,t)) ≤ τ minj 6=i d(qt , hullE(Qj,t)) then

7: ı̂t ← i

8: else

9: Call expert, and set ı̂t ← it
10: Qit ,t+1 ← Qit ,t ∪ {qt}
11: end if

12: end for
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The benefit of risk taking

In round 250: Decision regions of GHC(τ) for a mixture of truncated Gaussian distributions,

covariance matrix 0.0025I .
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Experiments: synthetic data

Data

1. Id = [0, 1]d , d ∈ {1, 4, 10, 50}, seeds s1, . . . , sN drawn uniformly on Id

qt drawn from the uniform distribution on Id or from a homogeneous mixture of

truncated Gaussians with covariance matrix 0.01I

2. Sd−1, d ∈ {2, 4, 10, 50}, seeds s1, . . . , sN drawn uniformly on Sd−1.

qt sampled either uniformly on Sd−1 or from a mixture, specifically i ∈ [N] drawn

uniformly at random and qt = yt/‖yt‖ where yt ∼ N (si , 0.01I ).

Algorithms CHC, GHC, CC, and sequential k-means.

17



Voronoi regret

Voronoi regret of all algorithms for each experimental setup (T = 5000)
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Experiments: real-world data

Datasets

• Quora Question Groups (QQG): 400,000 question pairs, annotated with a binary label

indicating whether the questions are paraphrases of each other → 1, 103 distinct groups

comprising a total of 7, 365 curated questions.

• ComQA4: 11,214 English questions collected from the WikiAnswers forum and grouped

into 4,834 paraphrase clusters by crowd workers

• CQADupStack5 : public benchmark with 99,785 questions organized into 74,519 groups.

4https://paperswithcode.com/dataset/comqa
5https://github.com/D1Doris/CQADupStack
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Experiments: real-world data

Distribution of group sizes
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Large Language Models

E5: EmbEddings from bidirEctional Encoder rEpresentations (E5). Bi-encoder architecture,

where both the query and passage encoders are initialized with BERT. Embedding dimension

1,024.

NOMIC: initialized from BERT and modified to address long-context retrieval. 100 million

parameters and supports a sequence length of up to 2048. Embedding dimension 784.

Mistral E5: unidirectional decoder architecture. The model initialized from Mistral 7B and

consists of 7 billion parameters. Embedding dimension 4,096.
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Regret of GHC on Quora Question Groups
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Regret of GHC on ComQA
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Regret of GHC on ComQA
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Regret of GHC on CQADupStack
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Regret of GHC on CQADupStack
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Conclusion

• A first(?) online optimization problem to minimize human intervention in LLM-based

systems

• Regret analysis made possible through stochastic geometry arguments

• In high dimension: several regimes call for different algorithms

• More problems in the context of fine-tuning or adapting large founda- tion models using

human feedback?
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