Learning with minimal human feedback

Alexandre Proutiere
joint work with William Réveillard, Vasileios Saketos, and Richard Combes

January 13, 2026 — CNI Seminar



Remove humans from the loop



Remove humans from the loop

Human feedback has been essential in

Generating data used to train models (annotations)

Aligning LLMs or other foundation models through RLHF

Transferring expert knowledge to models



Remove humans from the loop

Human feedback has been essential in
e Generating data used to train models (annotations)
e Aligning LLMs or other foundation models through RLHF
e Transferring expert knowledge to models

Human feedback is expensive!
Can we remove humans or at least minimize their intervention?
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Fine-tuning LLMs/RAGs to expert Q&A tasks

New expert knowledge, how to "pass” this knowledge to an LLM?
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Initially, the system cannot answer any question ... How much human intervention is needed?
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Online classification problem

In each round t > 1:

a. Query characterized by its embedding or representation q; € £ C R? in an i.i.d. manner
according to an unknown distribution z. N possible labels i € [N].

b. Agent’s Guess with or without Expert Guidance
e dataset D;: query-label pairs that the expert labeled up to round t

e decision 1 (ask the expert): correct label i = iy € [N], (¢, i) is appended to D,

e decision 2 (guess): 7, no feedback

Unobserved rewards: cost of calling the expert &« = —1 , wrong answer v = —10, and correct
answer 3 = +1.

Reward obtained by algorithm 7 in round t: r(t)
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Voronoi regret

Expected regret vs Oracle with knowledge of the expert labeling policy.

;
Re(T) =BT = Elr(2)]
t=1

Expert labeling policy dictated by a partition of convex polytopes Cy,...,Cn of £, unknown
to the agent. Whenever g; € C;, the expert provides label /.

Example: each label /, seed s; € £.
& partitioned as the Voronoi tessellation

generated by sp,...,sy.




Algorithm design: intuition

The expected volume? of a convex hull formed by random points remains negligible until
the number of samples is exponential in d.

2Chakraborti, D., Tkocz, T., and Vritsiou, B.-H. (2021). A note on volume thresholds for random
polytopes. Geometriae Dedicata, 213(1):423-431.



Algorithm design: intuition

The expected volume? of a convex hull formed by random points remains negligible until
the number of samples is exponential in d.

2Chakraborti, D., Tkocz, T., and Vritsiou, B.-H. (2021). A note on volume thresholds for random
polytopes. Geometriae Dedicata, 213(1):423-431.

Large time-horizon (> e9): volumes emerge, and we should learn the geometry of the cells.
The CHC (Conservative Hull-based Classifier) algorithm.

Moderate time-horizon (< e9): cells have not emerge yet, approximating them as single

points is sufficient.
The CC (Center-based Classifier) algorithm.



Large horizon: the CHC algorithm

CHC guesses only when it is sure!

Algorithm 1 Conservative Hull-based Classifier (CHC)

1: Initialize Q; 1 < 0 for i € [N]

2. fort=1,..., T do

if 37 ¢ [N]:q: € hullg(Q; ) then
e 1

w

4
5 else

6 call expert, and set 7; < i;
7: Qirtr1 — Qi r U {Qt}

8 end if

9: end for




The CHC algorithm

Hulls CA,-,t of CHC at t = 200. p is a mixture of truncated Gaussian distributions with equal
weights and covariance matrix 0.01/. Stars are the seeds, circles are the queries that required
an expert call.



Regret analysis of CHC

Flags of polytope. A flag of P is a sequence (,‘-'J-)j?":_o1 of faces! of P such that dim(F;) =
and Fp C -+ C Fyq_1.

IFaces of a polytope are specific planar surfaces on its boundary, e.g., for a cube, the 0-dim faces are the
vertices, the 1-dim faces are the 12 edges, and the 2-dim faces are the 6 squares forming the boundary.
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Flags of polytope. A flag of P is a sequence (,‘-'J-)j?":_o1 of faces! of P such that dim(F;) =
and Fp C -+ C Fyq_1.

[
Number of flags of P: F(P)
A quadrilateral has F(P) = 8 ‘
flags @
—
—

IFaces of a polytope are specific planar surfaces on its boundary, e.g., for a cube, the 0-dim faces are the
vertices, the 1-dim faces are the 12 edges, and the 2-dim faces are the 6 squares forming the boundary.



Regret analysis of CHC

Theorem 1 Assume that y is abs. cont. w.r.t. Lebesgue measure with density in [c, C]
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Regret analysis of CHC

Theorem 1 Assume that y is abs. cont. w.r.t. Lebesgue measure with density in [c, C]
(a) If € = [0,1]¢ and d > 2, then the regret of CHC satisfies

[ i(%))

Rano(T) = (8 = @) 15 1ya—141

log?(T) + O(log?*(T) log log(T)).
(b) if € = 8971, d > 3 and each cell C; is contained in an open halfsphere S, then the
regret of CHC satisfies

KC 3L, F(C)

Rere(T) < (B — a)?m log? }(T) 4+ O(log®?(T) log log(T)),

T \d
maxyec, y ' €

where K = max | ————— | .
i€[N] \ minyecc, v ' &



Proof sketch

CHC always gives the right answer: Repc(T) = (8 — «) Z;l va:l E[u(Ci \ Ci.1)]-

2Barany, |. and Buchta, C. (1993). Random polytopes in a convex polytope, independence of shape, and
concentration of vertices. Mathematische Annalen, 297(1):467-497.
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Proof sketch

CHC always gives the right answer: Reuc(T) = (8 — «) Z;l va:l E[u(Ci\ Ci )]

+ Proposition® Let P a convex polytope in RY with d > 2 and n > 1 points p1,. .., pp
sampled independently and uniformly at random in P, with convex hull P,. Then

AP)F(P) log? ™ n log?2(n) log log n
@117 (d—1) n +O< n )

EA(P\ Pp)] =

where F(P) is the number of flags of P, i.e., the number of sequences Fy C F; C -+ C Fy_1
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Proof sketch

CHC always gives the right answer: Repc(T) = (8 — «) Z;l va:l E[u(Ci \ Ci.0)]-

+ Proposition® Let P a convex polytope in RY with d > 2 and n > 1 points p1,. .., pp
sampled independently and uniformly at random in P, with convex hull P,. Then

AP)F(P) log? ™ n Lo (Iogd2(n) log log n)

E[MP\ Pn)] = (d +1)9-1(d —1)! n n

where F(P) is the number of flags of P, i.e., the number of sequences Fy C F; C -+ C Fy_1
of i-dimensional faces of P.

+ Rejection sampling, to account for non-uniform distributions.

2Barany, |. and Buchta, C. (1993). Random polytopes in a convex polytope, independence of shape, and
concentration of vertices. Mathematische Annalen, 297(1):467-497.

10



Voronoi regret of CHC

Corollary (a) if € =[0,1]¢ and d > 2, then the regret of CHC satisfies

Rene(T) < BB = )CN <2e(N +2d)

d/2
ran = ) 10g?(T) + O(log?™*(T) log log(T)).



Voronoi regret of CHC

Corollary (a) if € =[0,1]¢ and d > 2, then the regret of CHC satisfies

Rerc(T) <

8(3—a)CN [2e(N+2d)\"? s

[ T O(l T)logl T)).
3c(d +1)91 d—1 0g“(T) + O(log” *(T) log log(T))
(b) if € = 891, d > 3 and each cell C; is contained in an open half-sphere S: then the
regret of CHC satisfies

(d-1)/2
) log? ™} (T) + O(log?2(T) log log(T)).

Re(T) < 4(8 — a)KCN ( 2eN

cdd—2 d—2
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Minimax optimality of CHC in dimension 1

Theorem 2 Assume that £ = [0,1] and that ju has no atoms. Then for all T > 1, the
regret of CHC satisfies Ropc(T) < 2(8 — )N log (T +1).
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Minimax optimality of CHC in dimension 1

Theorem 2 Assume that £ = [0,1] and that ju has no atoms. Then for all T > 1, the
regret of CHC satisfies Ropc(T) < 2(8 — )N log (T +1).

Theorem 3 Assume that £ = [0,1] and that u is uniform on €. Denote by § =
(s1,--,5n) € [0,1]V a set of N query seeds in [0,1]. Then for all T > 1, the minimax
regret satisfies

ir;feg[]o?ﬁ"’ R(T,0) > (8 — ) I6V4?/; log ( T;— 1) =Q((8—a)(N—1)log T).
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Moderate horizon: the CC algorithm

Phase 1 (Explore) Expert called at each round t. §(t) := 5 Y gco,, 9

~

Estimated minimum center gap dmin: Omin(t) = min;z; [|5i(t) — 5;(t)]l2.
Stopping criterion:

10802

Ti:=min{t < T:Vie[N]|Qi¢| > ~——(d+2logT)}
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Moderate horizon: the CC algorithm

Phase 1 (Explore) Expert called at each round t. §(t) := ﬁ >0, 9

~

Estimated minimum center gap dmin: Omin(t) = min;z; [|5i(t) — 5;(t)]l2.
Stopping criterion:

10802
62 (t

min

Ty :=min{t < T:Vi€e[N][Qi > (d+2log T)}

~—

Phase 2 (Commit) In the second phase (t € [T1 + 1, T]), the center estimates are no longer
updated. CC guesses at each round the label of the closest estimated center:

7 = argmin; ||g: — §(T1)]|2-
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Regret analysis of CC

Assumption (Subgaussian mixture) 1 is a mixture of N o-subgaussian distributions on R¢
with component means s; and mixture weights p;.

Let Omin := min,-;éj ||5,‘ — SJ'H2.

3The expected distance between two random points scales as v/d.
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Regret analysis of CC

Assumption (Subgaussian mixture) 1 is a mixture of N o-subgaussian distributions on R¢
with component means s; and mixture weights p;.

Let 5min = min,-;éj ||5,‘ — SJ'H2.

Theorem 4 Let pnin := min;c(n] Pi- The regret of CC satisfies

Ree(T) <

(B—a)(log N +1) 1920%(d 4+ 2log T)
o 1+ -

min

)+(25—’Y—0<)N+(5—7) Te ¢,

If T < e, and if the mixture centers are sufficiently separated3: 62. > 8002d then

41 (B — a)(log N + 1)

Ree(T) < —
CC( )75 Pmin

+2(8—7)(N+1).

3The expected distance between two random points scales as v/d.
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Dealing with high dimension

Algorithm 2 Generalized Hull-based Classifier (GHC(7))
1: Initialize Q;1 «— 0 for i € [N]
2. fort=1,..., T do

3:  while 3/ € [N]: Q;; =0 do

4 Apply Algorithm CHC

5 end while

6: if 3i e [N]: d(qe, hulle(Qi¢)) < 7minjx d(ge, hullg(Q)+)) then
7: T < I

8: else

0: Call expert, and set 7; + I

10: Qi1 — Qi e U{qe}

11:  end if

12: end for

15



The benefit of risk taking
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[ Expert call Il Wrong guess —— Est. hulls © Expert-labeled queries
&= Correct guess ---- True Voronoi * Seeds

In round 250: Decision regions of GHC(7) for a mixture of truncated Gaussian distributions,
covariance matrix 0.0025/.
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Experiments: synthetic data

Data

1. 79 =10,1]9, d € {1,4,10,50}, seeds sy, ..., sy drawn uniformly on Z¢
g: drawn from the uniform distribution on Z¢ or from a homogeneous mixture of
truncated Gaussians with covariance matrix 0.01/

2. 8971 d € {2,4,10,50}, seeds sy, ..., sy drawn uniformly on S971.
q: sampled either uniformly on S9! or from a mixture, specifically i € [N] drawn
uniformly at random and g: = y:/||y:|| where y; ~ N(s;,0.01/).

Algorithms CHC, GHC, CC, and sequential k-means.

17



Voronoi regret of all algorithms for each experimental setup (T = 5000)

£ | Dim.|Dist. ETC CHC GHC Nearest-query GHC SKM
Unif. | 6123 £ 390| 142 + 11 110 + 7 186 + 33 14128 + 4275
! Mix. 4305 + 770 | 130 &+ 21 106 + 18 245 £ 50 11141 + 3741
Unif. | 9563 + 486 | 2972 + 72 | 1593 + 35 5396 + 95 30055 + 3659
. * Mix. |1064 + 142 2337 + 19 | 573 + 52 1366 + 99 793 + 94
* Unif. | 9782 + 462 | 9489 + 35 | 5233 + 94 9544 + 91 38900 + 4268
10 Mix. 337 8821 + 48 23+ 4 29 + 10 20 + 5
Unif. | 9597 + 143| 10000 = 0 | 9559 + 36 10000 £+ 0 42659 + 3378
% Mix. 24 +£9 10000 + 0 23+ 5 24 £9 23 + 5
Unif. | 9347 + 472| 132 + 12 125 + 6 254 + 42 26804 + 1923
: Mix. | 963 &+ 173 138 £ 8 104 + 13 155 + 19 791 + 645
Unif. |6099 + 889 | 1225 + 31 | 836 + 40 4005 £ 126 25645 + 8157
i1 ‘ Mix. 22+ 7 1083 £ 56 22+ 7 22+ 7 22+ 7
s Unif. | 7657 + 544 | 4878 + 150 | 2550 + 123 9743 £ 51 39956 + 3931
10 Mix. 22+9 7490 + 74 20 £+ 11 22+9 20 + 11
Unif. |8947 + 296| 9983 + 4 | 6135 £+ 73 10000 £+ 0 41246 + 1091
% Mix 26 £ 12 10000 £ 0 19+ 5 26 £ 12 19+ 5
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Experiments: real-world data

Datasets

e Quora Question Groups (QQG): 400,000 question pairs, annotated with a binary label
indicating whether the questions are paraphrases of each other — 1,103 distinct groups
comprising a total of 7,365 curated questions.

e ComQA*: 11,214 English questions collected from the WikiAnswers forum and grouped
into 4,834 paraphrase clusters by crowd workers

e CQADupStack® : public benchmark with 99,785 questions organized into 74,519 groups.

*https://paperswithcode.com /dataset/comqa
Shttps://github.com/D1Doris/CQADupStack
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Experiments: real-world data

Distribution of group sizes
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Large Language Models

E5: EmbEddings from bidirEctional Encoder rEpresentations (E5). Bi-encoder architecture,
where both the query and passage encoders are initialized with BERT. Embedding dimension
1,024.

NOMIC: initialized from BERT and modified to address long-context retrieval. 100 million
parameters and supports a sequence length of up to 2048. Embedding dimension 784.

Mistral_Eb5: unidirectional decoder architecture. The model initialized from Mistral 7B and
consists of 7 billion parameters. Embedding dimension 4,096.

21



Regret of GHC on Quora Question Groups
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Regret of GHC on ComQA
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ret of GHC on CQ
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Conclusion

A first(?) online optimization problem to minimize human intervention in LLM-based
systems

Regret analysis made possible through stochastic geometry arguments

In high dimension: several regimes call for different algorithms

More problems in the context of fine-tuning or adapting large founda- tion models using
human feedback?
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